Акустические глаза 2

«Акустические» глаза дельфинов 2

Москвич А. Е. Резников придает особое значение внутренней поверхности воздушных мешков, представляющей собой пигментированный кожный эпителий и играющей якобы роль сетчатки «акустических глаз». Он считает, что «пространственные акустические изображения лоцируемых объектов», возникающие в теле жировой подушки, могут восприниматься как образы «пространственного осязания». По мнению этого исследователя, звуковидение дельфина столь же острое, как и разглядывание окружающих предметов с помощью зрения у людей.
Ученые Г. Б. Агарков, Б. В. Солуха и Б. Г. Хоменко связывают ориентацию дельфинов в окружающей обстановке также с голографическим механизмом приема эхо-сигналов и получения объемного представления об окружающем пространстве на основе отраженных звуков. Они полагают, что отраженный акустический сигнал воспринимается многочисленными механорецепторами, размещенными в коже и мягких тканях головы, особенно в лобном выступе. Каждый механорецептор отдельным нервным каналом связан с мозгом, где и создается образ на базе звуковой информации.
Во всех выше изложенных гипотезах оказались уязвимые места. Их обнаружил крупный советский биоакустик Н. А. Дубровский. Он считает, что в этих концепциях не уделено должного внимания следующим акустическим и нейрофизиологическим аспектам:

1. Чтобы приемная система, работающая по принципу звуковидения и голографии, могла функционировать столь же эффективно, как слух и зрение, необходимо чтобы число рецепторных элементов достигало величины порядка 105 или более (30 тысяч внутренних и 20 тысяч внешних волосковых клеток в улитке млекопитающих). Между тем нейрогистологические исследования показали, что плотность и общее число рецепторных окончаний в структурах надчерепной части головы дельфина, в том числе вблизи воздушных мешков, достигает лишь 102 на 1 см2, т. е. близко к числу, характерному для кожи человека (например, в области предплечья). Известно, что кожный анализатор имеет крайне ограниченный частотный (не выше 200 — 300 гц) и динамический диапазон. При такой плотности рецепторных элементов можно воспринимать лишь самую грубую (интегральную) картину сфокусированного звукового поля.

2. В ходе эволюции органов чувств (зрения, слуха) происходила их постепенная защита от грубого непосредственного внешнего воздействия. Например, улитка органа слуха млекопитающих оказалась спрятанной в толще черепа, а сетчатка глаза — на дне глазного яблока в углублении костных глазниц. В условиях, такой защиты органов чувств и развились очень чувствительные сенсорные системы. Авторы же обсуждаемых гипотез поместили воспринимающие структуры приблизительно в те же самые места, где происходит излучение эхолокационных импульсов дельфина, звуковое давление в которых может достигать огромных значений — до 4 • 104 дин/см2. Какой невероятной скоростью релаксации должны обладать рецепторные и нейронные элементы, чтобы, спустя считанные миллисекунды после воздействия мощного импульса они были в состоянии воспринимать тончайшее эхо с ничтожно малым звуковым давлением (сотые и даже тысячные доли бара, т. е. в миллион раз меньшие сигналы). В природе неизвестны случаи пространственного совмещения органа звукоизлучения и звукоприема. Напротив, следует ожидать у дельфинов существования специальных дополнительных механизмов защиты слуховой системы от воздействия собственных зондирующих сигналов.

3. Детальность звукового изображения зависит от отношения длины волны звукового сигнала к размеру входной аппертуры, в данном случае к диаметру звуковой линзы. Так как максимум спектра эхолокационного сигнала дельфина приходится на 75 кгц (длина волны 2 см), а диаметр линзы не превышает 10 см, то отношение этих величин составляет 0,2. В этих условиях звуковое изображение, если бы оно существовало, было бы весьма грубым и не позволило бы дельфинам иметь высокую разрешающую способность.

4. Трудно себе представить способность рецепторов надчерепных структур дифференцировать частоты звуковых сигналов. В органе слуха для этой цели служит специальная система — улитка с базилярной и текториальной мембраной и органом Корти. Непонятно, как могло бы происходить различие частоты звука, если бы не функционировала слуховая система дельфина.

5. Трудно с эволюционной точки зрения объяснить необходимость нового органа звуковой рецепции при наличии у млекопитающих великолепно развитого слуха, в частности бинаурального слуха, позволяющего объяснить способность человека и животных осуществлять пространственный слуховой анализ. Это тем более верно, что именно слуховая система дельфина развита исключительно хорошо.
Все это вместе взятое позволяет считать указанные гипотезы, основанные на принципе голографии, искусственными.

В связи с вопросом о голографическом восприятий у дельфинов рассмотрим очень интересную концепцию биолога В. А. Козака (Институт физиологии АН УССР) о звуковидении у кашалота. Этот автор исполинскую голову крупнейшего зубатого кита уподобляет гигантскому плавающему «акустическому глазу», в котором есть и «сетчатка», и «линза», и «стекловидное тело», и сложный нервный аппарат. К вогнутой передней стенке черепа кашалота примыкает полость — фронтальный воздушный мешок. Внутри этого мешка на его задней стенке В. А. Козак обнаружил множество (3 — 4 тысячи) пузырьков размером от горошины до голубиного яйца (рис. 40, с). Пузырьки заполнены жидкостью, сильно иннервированы и снабжены огромным количеством рецепторных клеток. По мнению исследователя, это пузырчатое рецепторное поле выполняет роль сетчатки, позволяющей воспринимать звуковые образы, аналогично зрительным образам, воспринимаемым глазом. Акустическую линзу в голове кашалота создает уплотненная ткань, расположенная впереди верхнего спермацетового мешка. Эта «линза» концентрирует и направляет звуковые лучи на пузырчатую выстилку. Верхний спермацетовый мешок (рис. 40, б), прозрачный для звуковых лучей, играет роль стекловидного тела и служит звукопроводом. Предполагается, что ход звуковых лучей при эхолокации кашалота таков: отраженный от объектов звук падает на переднюю стенку головы животного, проходит, концентрируясь, через плотную линзу в вытянутый спермацетовый мешок и попадает на пузырчатую выстилку — рецепторное поле фронтального мешка. Отсюда раздражение поступает в соответствующий центр головного мозга, где и создается звуковой образ. Звуковидение для кашалота, питающегося в зоне вечного мрака, имеет первостепенное значение и позволяет даже слепым особям иметь нормальную упитанность. В ходе эволюции глаза этого кита все больше и больше сдвигались на бока головы, а вперед выдвигалась звукопреломляющая акустическая линза и спермацетовый мешок — акустический канал — волновод. Орган акустического зрения кашалота формировался для работы на глубинах, где протекала большая часть его жизни. Как полагает В. А. Козак, огромный «акустический глаз» позволяет кашалоту получать стереоскопическую картину окружающей обстановки в трехмерном измерении. Свою концепцию об акустическом, зрении кашалота этот ученый построил на основании им же открытого рецепторного пузырчатого поля, которое не обнаружено у дельфинов. Поэтому, в какой мере критические замечания Н. А. Дубровского о голографическом восприятии дельфинов затрагивают и теорию В. А. Козака о звуковидении кашалота, предстоит выяснить в будущем.

ЧИТАЙТЕ ДАЛЕЕ

Отзывы и трекбеки отключены.

Отзывы временно отключены.

Яндекс.Метрика